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1 Introduction

A large body of engineering science provides us with theories and formulas
for modeling the physical world. Correct use of those formulas requires an
understanding of physics. It also requires attention to algebraic and numerical
details. An important aspect of attention to detail is the correct use of units
for physical quantities appearing in engineering formulas.

Engineers should always carry units with all formulas. Carrying and checking
units is one way to maintain consistency in the use of formulas. At the very
least, checking units helps us to prevent silly errors. However, having consistent
units is not a guarantee that the formula is correct. In other words, checking
for consistency of units is a one-sided kind of test: unit checks can find errors,
but unit checks cannot prove correctness.

1.1 Learning Objectives

After studying these notes you should be able to

• Explain the difference between dimensions and units.

• Write the dimensions for any formula involving physical quantities, e.g.,
Newton’s law of motion.

• Write the dimensions of the derived quantities in Table 2.

• Explain the principle of dimensional homogeneity

• Explain how the additive rule for units is more restrictive than the prin-
ciple of dimensional homogeneity.

• Use the multiplication rule to convert units.

• Correctly distinguish units of physical quantities that may have the same
numerical value, e.g., the density and volume of water in CGS units.

2 Dimensions of Physical Quantities

Before discussing units, we introduce the more fundamental concept of a dimen-
sion. In this context, a dimension is more general than the spatial coordinates
associated with the three-dimensional space that we enhabit. When discussing
units, a dimension is a measure of a physical quantity that does not have a
numerical value associated with it1.

For example, length and area are dimensions associated with the size of
an object. We can refer to an object’s length without giving a value for that
length. We can say that two objects have the same length without providing

1NIST refers to base quantities instead of dimensions. See e.g., https://physics.nist.
gov/cuu/Units/units.html.
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Table 1: Basic dimensions. The symbols for basic dimensions are capital letters in
non-italic shape.

Dimension Symbol Description

Length L Distance between to points; a measure of the geo-
metric size of a an object.

Mass M The amount of matter; mass does not change when
an object is moved to another gravitational field.

Time T temporal duration

the numerical values for those lengths. We can even show that they have the
same lengths, for example, by placing then next to each other, without giving
a value for that length.

To summarize:

• A dimension is a type of quantitative measure without reference to a sys-
tem of units or to a numerical value in any one system of units.

• Units are quantitative measures established in a standardized system with
respect to a precise, absolute reference.

Length is a dimension. A meter is a unit of length, defined in a system of units,
and having a precisely defined value in that system.

2.1 Basic Dimensions

Basic dimensions are indivisible in the sense that they cannot be defined by
combinations of other dimensions. Table 1 lists three basic dimensions used
in engineering mechanics. We use the symbols L, M, and T as shorthand for
these dimensions. It can be confusing because those same symbols are also
used as engineering variables. With practice you will be to recognize when L
(non-italic) is used to represent the length dimension and when L (in italic) is
a variable that defines a specific length in an engineering problem. To further
clarify meaning as we manipulate dimensions, we use square brackets around
dimensions in algebraic expressions.

2.2 Derived Dimensions

The dimensions of force can be deduced from Newton’s law of motion

F = ma (1)

where F is a force acting on mass m and causing it to accelerate at rate a.
Dimensions obey standard algebraic rules so

dimension of force = (dimension of mass)× (dimension of acceleration)

2



Force Work/Energy

[F] = [M] [L]
[T2]

[E] = [F][L]

 = [M] [L
2]

[T2]

Power

[P] = [E]
[T]

 = [M] [L
2]

[T3]

F

W = mg

F
d

W = mg

E = Fd

E = FV

F

V

W = mg

•

Figure 1: The derived dimensions of force, work and power can be obtained by
considering the force required to hold, lift and move an object.

Mass has the basic dimension, M. The dimension of acceleration can be deduced
from calculus

dimension of acceleration = dimension of
d2x

dt2
=

[L]

[T2]

To be extra clear, we use square brackets to indicate that the symbols L, M,
and T are interpreted as dimensions. In the preceding expression you can read
[L] as “the dimensions of length” and [T2] as “the dimensions of time, squared”.
Therefore,

dimension of force = [M]

[
L

T2

]
or,

[F] = [M]

[
L

T2

]
(2)

where [F] is understood to mean “dimensions of force”.
The preceding development shows that the dimension of force are con-

structed as a combination of other dimensions. We call this type of dimension
a derived dimension to distinguish it from the basic dimensions, M, L, and T,
that cannot be expressed in terms of other dimensions.

With the dimensions of force established, we can derive the dimensions of
other terms that involve force. Figure 1 depicts three physical concepts related
to force acting on an object in a gravity field:

• Force necessary to hold an object of mass m in static equilibrium;

• Work is required to lift that object a distance d;
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• Power is the rate of energy expenditure required to move that object with
velocity V .

Figure 1 also shows the derived units for force, work and power.

Example 2.1 Dimensions of Momentum

Momentum is defined as the product of mass and velocity. Therefore

[momentum] = [M]
[L]

[T]
=

[M] [L]

[T]

�

Example 2.2 Dimensions of Pressure

Pressure is defined as a force per unit area. Therefore

[pressure] =
[F]

[area]
=

[F]

[L2]
=

1

[L2]
[M]

[L]

[T2]
=

[M]

[L][T2]

�

Example 2.3 Dimensions of Torque

Torque is a force acting with a lever arm to create a
tendency of an object to rotate. For example, as de-
picted in the sketch to the right, applying force per-
pendicular to the axis of a wrench will cause a twisting
action on a nut. The torque on the nut is Fd, where
F is the force and d is the distance between the line
of action of the force and the center of pivot for the
nut. The dimensions of torque are

[torque] = [F] [L]

F

d

�

Table 2 lists some derived dimensions commonly used in Newtonian mechan-
ics. In practice, we write [F] for units of force in engineering formulas and then
substitute the basic dimensions of [M][L]/[T2] when we need to algebraically
simplify or check dimensions in a formula. Later we introduce the units of force
in the SI system.
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Table 2: Derived dimensions associated with basic Newtonian mechanics.

Area [L2] Force [F] = [M]× [L]

[T2]
=

[M] [L]

[T2]

Volume [L3] Work [F]× [L] =
[M] [L2]

[T2]

Velocity
[L]

[T]
Power [F]× [L]

[T]
=

[M] [L2]

[T3]

Acceleration
[L]

[T2]
Torque [F]× [L] =

[M] [L2]

[T2]
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Figure 2: Ballistic trajectory of a cannon ball.

2.3 Equations Must Be Dimensionally Homogeneous

The principle of dimensionally homogeneity requires that each additive term in
an equation must have the same dimensions. For example, we cannot add a
length to a mass. Figure 2 shows a schematic representation of the flight of a
cannon ball. The general equations for the trajectory of the ball are

x(t) = x0 + Vx,0t + axt
2

y(t) = y0 + Vy,0t + ayt
2

[L] [L] [L] [L]

(3)

where x and y are the position coordinates, (x0, y0) is the initial position of the
ball, (Vx,0, Vy,0) is the initial velocity of the ball, (ax, ay) are the acceleration of
the ball. Each of the terms in Equations (3) must have dimensions of length.

2.4 Dimensions of Angles and π

For engineering analysis, angles should be measured in radians, not degrees. A
radian is defined as the ratio of arc length to radius, as show in Figure 3.

θ =
s

r

Because the angle is a ratio of lengths, it is dimensionless, meaning that it has
no dimension. However, although angles have dimensions, angles do have a unit,
which is the radian.

The pure number π is defined as the ratio of a the circumference of a cir-
cle to its diameter. Since circumference and diameter are both lengths, π is
dimensionless.

r
s

q

Figure 3: The angle θ is defined as the ratio s/r.
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Table 3: Units of basic dimensions in the SI and British gravitational systems of
units.

Dimension SI Unit English engineering unit

Length meter (m) foot (ft)

Mass kilogram (kg) lbm

Time second (s) second (s)

Temperature kelvin (K) degree Fahrenheit (◦F)

Electric current Ampere (A) Ampere (A)

Amount of substance Mole (mol) Mole (mol)

Luminous intensity Candela (cd) Candela (cd)

3 Units

Units are standardized measures associated with dimensions. Units have nu-
merical values in carefully defined and standardized systems of units.

A systems of units is a set of units with conventional names and precise
and definitions. The most common systems of units used in engineering are SI
(Systèm internationale (d’unités) or International System of Units) and English
Engineering units. Table 3 list the seven base units (or dimension, in the termi-
nology used in previous sections) listed by the National Institute of Standards
and Technology2, along with the SI and English Engineering units for those
dimensions.

For modern engineering and global commerce, the SI system is preferred.
All major industrial countries except the United States use SI3. However, due
to political inertia and a large legacy of installed manufacturing equipment,
English Engineering units are still widely used in the United States4.

3.1 Addition Rule for Equations with Units

The principle of dimensional homogeneity extends to units. All terms in a sum
must have the same units. We can call this the addition rule, which is just the
logical requirement of applying dimensional homogenity to units. Consider, for
example

A = B + C. (4)

2https://www.nist.gov/pml/weights-and-measures/si-units
3According to Wikipedia, in 2018 the only countries not adopting SI units are the United

States, Myanmar, Liberia, Palau, the Marshall Islands, the Federated States of Micronesia,
and Samoa. Of those countries, Myanmar and Liberia use SI units practically, and Palau,
Micronesia and the Marshall Islands are administered by the United States federal government.
https://en.wikipedia.org/wiki/Metrication_in_the_United_States.

4NIST publication 1136a, https://www.nist.gov/sites/default/files/documents/pml/
wmd/metric/1136a.pdf, provides a concise history of attempts to adopt the metric in the
United States. For example, Congress passed the Metric Conversion Act in 1975. Additional
support was provided by the Omnibus Trade and Competetiveness Act of 1988, which required
federal agencies to us the SI system by 1992. More details are provided in NIST Special
Publication 811, The NIST Guide for the use of the International System of Units, https:
//www.nist.gov/physical-measurement-laboratory/nist-guide-si-preface
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For Equation (4) to be valid, the units of A must match the units of B, which
must match the units of C. Of course, the dimensions of A must match the
dimensions of B, which must match the dimensions of C. However, the require-
ment of equality of units is more strict than the equality of dimensions.

Example 3.1 How tall is Jane?

Using English Engineering units, Jane says she is 5 feet, 10 inches tall.
How tall is Jane in feet? How tall is Jane in inches?

Let H be the symbol used for Jane’s height. The addition rule prevents
us from writing H as 5 ft + 10 inch, or 60 inch + 0.8333 ft. To correctly
add the two height quantities (5 ft and 10 inch), the two quantities have to
have the same units, either ft or inch. Therefore, we can correctly write
the equations

H = 60 inch + 10 inch = 70 inch

or

H = 5 ft + 0.8333 ft = 5.8333 ft.

To convert feet to inches or inches to feet, use the multiplication rule,
which is discussed next.

�

Multiplication Rule for Converting Units

A basic rule of algebrais that we can always multiply any term in an equation
by one, without changing the correctness of the equation. For example, we can
multiply any term in Equation (4) by 1. For example

A = B + C × 1 (5)

In unit conversions, we multiply by a ratio of two equal quantities, which is
equivalent to multiplying by 1. For example, the exact relationship between
inches and centimeters is

1 inch = 2.54 cm (6)

Dividing through by the right hand side gives

1 inch

2.54 cm
= 1 (7)

Or, we can divide Equation (6) by the left hand side to get.

1 =
2.54 cm

1 inch
(8)

Equation (7) and Equation (8) are examples of conversion factors we use in
converting units.
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A B

C

Figure 4: A small box of height C stacked onto a larger box of height B.

Example 3.2 How tall is a stack of boxes?

Figure 4 represents a stack of two boxes. Suppose the height of the
bottom box is B = 2 ft and the heigh of the top box is C = 1.5 inch.
The total height is A = B + C, which has consistent dimensions because
B and C both have dimensions of length. However, we cannot add 2 ft
to 1.5 inch because those two quantities have different units. Although
this example is trivial, it is surprising how often inexperienced (or sloppy)
engineers make errors by adding quantities with unequal units.

One way to correctly add the height of the two objects is to convert the
height of the small box to feet to get

A = 2 ft + 1.5 inch × 1 ft

12 inch
= 2 ft + 0.125 ft = 2.125 ft

Alternatively, we could convert the height of the larger box to inches

A = 2 ft × 12 inch

1 ft
+ 1.5 inch = 24 inch + 1.5 inch = 25.5 inch

Of course, being careful engineers, we check that these two answers are
equivalent

A = 2.125 ft × 12 inch

1 ft
= 25.5 inch

which shows that the two methods of computing the height are equivalent.

�

Example 3.3 How tall is Jane?

From Example 3.1 above, Jane’s height in feet is

H = 5 ft + 10 inch
1 ft

12 inch
= 5 ft + 0.833 ft = 5.833 ft

Alternatively, her height in inches is

H = 5 ft
12 inch

1 ft
+ 10 inch = 60 inch + 10 inch = 70 inch

To convert inches to meters, multiply by two conversion factors

H = 70 inch
2.54 cm

inch

1 m

100 cm
= 1.78 m

Note that there is no inconsistency in using H as the symbol for height
in the three different units. �
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Table 4: SI Units of force, energy and power.

Physical
Quantity Symbol Definition

Force N 1 newton = 1 kg
1 m

1 s2

Energy J 1 joule = 1 N m

Power W 1 watt =
1 J

1 s

Example 3.4 How big is the floor area of a room?

A room with a floor dimension of 12 ft by 16 ft has an area of 192 ft2.
What is the floor area in m2?

One way to solve this problem is to convert each of linear dimensions
and multiply them together.

12 ft
12 in

ft

2.54 cm

in

1 m

100 cm
= 3.66 m

16 ft
12 in

ft

2.54 cm

in

1 m

100 cm
= 4.88 m

Now we can compute the area in m2

A = (3.66 m)(4.88 m) = 17.86 m2.

An alternative approach is to work with the floor area directly. That
technique would be necessary, for example, if you were given the floor
area without the individual length and width of the room.

A = 192 ft2
[

12 in

ft

]2 [
2.54 cm

in

]2 [
1 m

100 cm

]2

= 17.84 m2

The slight difference in values for A is due to roundoff errors in convert
16 ft to m.

�

3.2 Derived Units of Force, Energy and Power

Table 2 gives the basic dimensions for force, work/energy and power. In SI and
Engineering Engineering systems of units, there are additional names associated
with those quantities. In SI the unit of force is newton; the unit of energy is
joule, and the unit of power is watt. Table 4 gives the definitions of those derived
units in terms of force units. Note that when we write out the names of the
units, the first letter is not capitalized, even though the unit is named after a
famous person. In contrast, the one-letter symbol is always capitalized.
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4 Potential Pitfalls

As with any technical field, there are many ways to make errors in computations.
Here we point out two potential pitfalls when working with units.

4.1 Quantities with Equal Values and Unequal Units

Before concluding a discussion of units, we connect the concept of units with
physical relationships between distinctly different, but related, quantities. We
will use a simple example to demonstrate the importance of carrying units to
avoid confusing two related physical quantities that are not the same, even when
those physical quantities have the same numerical value.

Consider the relationship between mass, m, density, ρ, and volume, V, which
is

m = ρV. (9)

Density is an intensive property of a material. In this context intensive means
not dependent on size. For example, at the same temperature, the density of
water is the same whether the sample is the size of a test tube or the size of
a drinking glass or the size of a swimming pool. In contrast, both the mass,
m, and volume, V, are extensive properties. The mass (or volume) of water in
a test tube is not the same as the mass (or volume) of water in a full glass of
water or the mass (or volume) of water in a swimming pool.

Equation (9) expresses a relationship between volume and mass. If we know
the volume of a sample and the density of the material in that sample, we can
use Equation (9) to compute the mass in the sample.

Consider a container holding 250 cm3 of water. The mass of water in the
container is

m =
(

1
gm

cm3

) (
250 cm3

)
= 250 gm

In this case, the mass of the water has the same numerical value (250), in units
of gm, as the volume of the water (250), in units of cm3. However, although
m and V have the same numerical value, m and V are not the same physical
quantity.

4.2 Relative Temperature Scales

An exception to the multiplication rule from unit conversion is the changing
temperature in units of ◦C to units of ◦F, and vice versa. The problem is
that the Celcius and Fahrenheit are not absolute temperature units. Figure 5
is a graphical representation with the boiling and freezing points of water as
the references. The diagram shows what we also know: 32 ◦F is the same
temperature as 0 ◦C. The zero values of these temperature scales are not at the
same temperature. Therefore, the relationship between these temperature units
cannot be expressed as a simple ratio.

Consider an object at a stable temperature. Let TF be the temperature
of that object in ◦F, and let TC be temperature of that object in ◦C. The
conversion is

TC = (TF − 32)
5

9
(10)
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water freezes 32 °F
0 °F

212 °F100 °C

0 °C
– 17.78 °C

water boils

Figure 5: Celcius and Fahrenheit temperature scales are not absolute – their zero
values do not occur at the same temperature.

or

TF =
5

9
TC + 32. (11)

When temperature differences are concerned, the misalignment of zero de-
grees on the two temperature scales does not matter.

Consider the indoor-to-outdoor temperature difference depicted in Figure 6.
Before we go further, double check that the indoor and outdoor temperature
values in the sketch are converted correctly.

Let Tin and Tout be the indoor and outdoor temperatures, respectively. The
temperature differences in the two systems of units are

∆TC = Tout − Tin = 20− 5 = 15 ◦C (12)

∆TF = Tout − Tin = 68− 41 = 27 ◦C (13)

A simple calculation shows that for this case ∆TC = (5/9)∆TF . In general for
any two temperatures T1 and T2

T1,F − T2,F =

[
9

5
T1,C + 32

]
−

[
9

5
T2,C + 32

]
=

9

5

(
T1,C − T2,C

)
because the offset of 32 ◦F cancels when temperature differences are converted.

Tin = 20 °C
Tin = 68 °F

Tout = 5 °C
Tout = 41 °F

Figure 6: Indoor and outdoor temperature differences in ◦C and ◦F.
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5 Summary

The important ideas from these notes are:

• A dimension is a type of quantitative measure without reference to units
or specific numerical values. Basic dimensions are length, mass and time,
which (in these notes) are given the symbols L, M and T.

• Units are standard measures associated with dimensions and that are de-
fined with respect to reference quantities within a system of units. Basic
units in the SI system are m (meter), kg (kilogram) and s (second). The
corresponding units in the English Engineering system are ft (feet), lbm

(pound mass) and s (second).

• Formulas that describe physical phenomena, e.g., Newton’s law of motion,
must express a consistent relationship between dimensions. In the case of
Newton’s law, the dimensions of force are defined, by the dimensions of
the formula

F = ma =⇒ [force] =
[M] [L]

[T2]

where [L] is read “dimensions of length”, etc.

The dimensions of derived quantities are expressed from the formulas that
define those quantities, as summarized in Table 2.

• The principle of dimensional homogeneity requires that all terms that add
to each other in an equation must have the same dimensions.

• A given dimension can be expressed with different units. For example,
length can be expressed in meters, centimeters, feet or inches. When
adding quantities the units must be the same. Therefore, since units are
more specific than dimensions, the additive rule for units is more restrictive
than the principle of dimensional homogeneity.

Simple Rule: Addition can only involve quantities with the same units.

• Convert units by multiplication of ratios that are equal to one. For exam-
ple, convert 15 inches to centimeters with the following,

2.54 cm = 1 in =⇒ 2.54 cm

1 in
= 1

Therefore

15 in× 2.54 cm

1 in
= 38.1 cm

A series of multiplication-by-one conversions can be combined. For exam-
ple, to convert 3 miles to kilometers

3 mile× 5280 ft

1 mile
× 12 in

ft
× 2.54× 10−2 m

in
× 1 km

1000 m
= 4.83 km

• Physical quantities with the same numerical value, but not the same units
are not equal. This confusion often arises when performing computations
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involving the density of water in SI or CGS units. To one decimal place,
the density of water is

ρw = 1
1gm

cm3

The mass of water in a 200 cm3 is

m = ρV =
1gm

cm3
× 200 cm3 = 200 gm

Although the mass (200 gm) and volume (200 cm3) have the same nu-
merical value, the mass and volume are two distinctly different physical
quantities with different units.

• Temperature conversion from ◦C to ◦F is complicated because the two
scales are zero at different temperatures. Either Equation (10) or Equa-
tion (11) is needed convert between ◦C and ◦F, unless the conversion is
for temperature differences.

6 Practice Problems

Use the following problems to practice working with units. For best results (i.e.,
best practice), do not use an on-line unit conversion tool. Instead, write out
the conversion factors as multiply-by-one terms. You may need to look up the
factors that allow you to create the multiplicative factors.

1. What are the dimensions and SI units of each of the following expressions?

a. ṁ = ρvA, where ρ is a density, v is a velocity, and A is an area

b.
1

2
ρv2, where ρ is density and v is velocity.

c. ṁgh, where ṁ is a mass flow rate (kg/s), g is the acceleration of
gravity, and h is a height.

d.
1

2
ṁv2, where ṁ is a mass flow rate (kg/s), and v is velocity

2. Use the multiplication rule to evaluate the following

a. Convert 5 in2 to cm2.

b. Convert 50 kph (kilometers per hour) to m/s.

c. Convert 50 kph (kilometers per hour) to MPH (miles per hour).

d. Convert 200 in lbf to N m.

e. Convert 50 PSI to Pa.

3. If ω is an angular velocity in rad/s, r is a radius in m, and v = rω, what
are the units of v? What is the physical significance of v?
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4. Fill in the missing temperatures in the following table.

T (◦C) T (◦F)

−30

−10

0 0

5

50

80

30

5. Use the multiplication rule to make the following currency conversions.
Don’t just use an on-line converter. Document the conversion with mul-
tiplication.

a. 5 US dollars to Euros

b. 10000 Chinese yuan to US dollars

c. 20 US dollars to South African Rand

How is the conversion of currencies different from the conversion of phys-
ical quantities such as converting meters to inches?
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